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Abstract. Mechanical theorem provers have been shown to expose proof
errors, some of them serious, that humans miss. Mechanical provers will
be applied more widely if they are easier to use. The tool TAME (Timed
Automata Modeling Environment) provides an interface to the prover
PVS to simplify specifying and proving properties of automata models.
Originally designed for reasoning about Lynch-Vaandrager (LV) timed
automata, TAME has since been adapted to other automata models.
This paper shows how TAME can be used to specify and verify prop-
erties of I/O automata, a class of untimed automata. It also describes
the experiences of a new TAME user (the �rst author) who used TAME
to check Lamport-style hand proofs of invariants for two applications:
Romijn's solution to the RPC-Memory Problem [21, 20] and the veri�-
cation by Devillers et al. of the tree identify phase of the IEEE 1394 bus
protocol [9, 8]. For the latter application, the TAME mechanization of
the hand proofs [8] is compared with the more direct PVS proofs [9].
Improvements to TAME in response to user feedback are discussed.

1 Introduction
When done by hand, even the most carefully crafted formal speci�cations and
proofs may contain inconsistencies and other errors, some of them serious. Me-
chanically supported formal methods, such as mechanical provers, can expose
many errors that humans miss (see, e.g., [5, 12]). Not only can mechanical check-
ing of a formal speci�cation and its properties con�rm the correctness of the
properties, it can also reduce the human e�ort needed to expose defects in the
speci�cation and in the statements of properties while the speci�cation and
proofs are under development [9].

A major barrier to more widespread use of mechanical proof methods in
industry is the overhead and complexity of using a mechanical theorem prover.
One must �rst encode a speci�cation in the language of the prover and then
must establish properties of the speci�cation in the logic of the prover, using
proof steps that often do not correspond to proof steps natural for a human.
To date, most mechanical veri�cation has been done by researchers with highly
detailed knowledge of a mechanical prover, such as PVS [23]. The frequency
of mechanical veri�cation can be expected to increase if tools such as PVS are
easier, and thus more cost-e�ective, to use.

The tool TAME (Timed Automata Modeling Environment) [3, 5, 4, 6] pro-
vides an interface that simpli�es specifying and proving properties of Lynch-
Vaandrager (LV) timed automata [18] using PVS. TAME is designed to make
mechanically supported formal methods (such as PVS) easier to use by sim-
plifying the encoding of an automaton speci�cation, by supporting proofs of
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properties through natural proof steps, and by presenting saved proofs in human-
understandable form. A major goal of TAME is to facilitate the checking of hand
proofs with PVS.

The TAME approach to mechanized theorem proving may be contrasted
with the approach of Devillers, Gri�oen, Romijn, and Vaandrager, whose PVS
proofs for the properties in [9] do not follow the hand proofs given in [8], but
were created independently. For this reason, Devillers et al. question the utility
of the hand proofs. In contrast, we view the existence of hand proofs|or, at
least, human-understandable mechanized proofs|as useful, because such proofs
explain why a speci�cation has a given property. A property that holds for unex-
pected reasons raises the question of whether the speci�cation actually captures
the intended behavior. Mechanized proofs that follow the structure of the hand
proofs con�rm not only the correctness of the properties but the correctness of
the given reasons that the properties hold.

This paper makes four contributions. First, we demonstrate by example how
TAME can be applied to I/O automata to check Lamport-style hand proofs.
Originally designed to specify and verify properties of LV timed automata,
TAME has been adapted to work with other automata models, including the (un-
timed) I/O automata model and the automaton model that underlies SCR [6].
Previous proofs checked with TAME were natural language (but not Lamport-
style) hand proofs. Second, the paper describes the positive experience of a new
user (the �rst author), who used TAME to check the Lamport-style proofs of
invariant properties for two applications: Romijn's solution of the RPC-Memory
Problem [21, 20], and the veri�cation by Devillers et al. of the tree identify phase
of the IEEE 1394 bus protocol [9, 8]. Third, the paper describes improvements
to TAME that resulted from the �rst author's feedback. Finally, the paper com-
pares two approaches to using PVS to prove properties of an I/O automata
model: one approach uses TAME, while the second uses PVS directly.

Section 2 briey reviews PVS, I/O automata, and TAME. Based on the �rst
author's use of TAME and the use of PVS described in [9] to prove properties
of the TIP (Tree-Identify Protocol) speci�cation, Section 3 contrasts the TAME
approach for specifying and proving properties of I/O automata with the direct
use of PVS. Section 4 discusses how speci�cations of I/O automata and Lamport-
style proofs of invariant properties can be translated into TAME and presents
the results of the �rst author's application of TAME to TIP as well as to several
I/O automata from [21]. Section 5 discusses the �rst author's experience with
TAME and resulting improvements to TAME, Section 6 describes related work,
and Section 7 presents some conclusions and our future plans.

2 Background

PVS. PVS [23] is a higher order logic speci�cation and veri�cation environment
developed by SRI. Proof steps in PVS are either primitive steps or strategies
de�ned using primitive steps, applicative Lisp code, and other strategies. Strate-
gies may be built-in or user-de�ned. PVS's support for user-de�ned strategies
allows the construction of specialized prover interfaces, such as TAME, on top
of PVS. TAME exploits both the PVS support for user-de�ned strategies and
recent enhancements to PVS, including 1) support for labeling formulae appear-
ing in proof goals and for documenting proofs with comments, 2) some new
�ner-grained primitive steps, and 3) new access functions and documentation
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that allow strategies to incorporate computations based on the internal data
structures maintained by PVS.

One important PVS feature is its very rich strong type system. Because PVS
permits the user to de�ne subtypes using arbitrary predicates, the type correct-
ness of PVS speci�cations is undecidable, and the PVS typechecker typically
generates several type correctness conditions (TCCs) that must be veri�ed be-
fore a speci�cation is \type correct". PVS has a general strategy that proves
many TCCs automatically; however, the user is sometimes obliged to supply a
proof. When a TCC cannot be proved, usually some subtle inconsistency in the
speci�cation requires correction.

The I/O Automata Model. In the I/O automata model [17], a system is
described as a set of I/O automata, interacting by means of common actions.
For veri�cation purposes, these interacting automata can be composed into a
single automaton by combining corresponding output and input actions. Every
I/O automaton is described by a set of states, some of which are initial states;
a set of actions (input, output, and internal); and a transition relation coupling
a state-action pair with another state. In a typical I/O automaton speci�cation
(see Appendix A), a state is an assignment of values to state variables. For
deterministic automata, which include all the automata discussed in this paper,
the transition relation can be described as a (partial) function that maps an
action and an old state in which the action is enabled to a new state obtained
by applying the e�ects of the action to the state variables of the old state. Three
major classes of properties of automata are 1) state invariants, 2) simulation
relations, and 3) properties of execution sequences. Proofs of both 1) and 2)
have a standard structure, with a base case involving initial states and a case for
each possible action, and hence are especially good targets for mechanization.
The proof examples in this paper all involve state invariants and thus belong to
class 1).

TAME. TAME provides a template for specifying automata, a set of standard
theories, and a set of standard PVS strategies. The TAME template provides a
standard structure for de�ning an automaton. Originally designed for specifying
LV timed automata, this template is easily adapted to specifying I/O automata.
To de�ne either a timed or untimed automaton, the user provides the information
indicated in Figure 1. The standard strategies of TAME are designed to support

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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actions Declarations of —
non-time-passage actionsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

MMTstates Type of the “basic state” Usually a record type
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OKstate? An arbitrary state predicate Default is true
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trans Effects of all the actions trans(a,s) = state reached
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initial states s = (# basic := basic(s)
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... #)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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assumed among the constantsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Fig. 1. Information required in the TAME template.
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mechanical reasoning about automata using proof steps that mimic human proof
steps. These strategies are based on the set of standard theories, certain template
conventions, and a set of special de�nitions, auxiliary local theories, and local
strategies that can be generated from a template instantiation. Reference [2]
describes the TAME user strategies in detail.

Speci�cations of I/O automata in the style used in [9] and [21] can be easily
translated into TAME speci�cations. The de�nitions of the (non-time-passage)
actions of the I/O automaton provide the names and argument types needed
for their TAME declarations, preconditions and e�ects. The de�nitions of the
state variables and their types in the I/O automaton speci�cation provide the
information needed to de�ne the type of the basic state as well as any needed
auxiliary type de�nitions in the TAME speci�cation. The initial state informa-
tion for the I/O automaton is translated into the initial state predicate start
of the TAME speci�cation. Finally, any constants de�ned for the I/O automa-
ton can be declared in the TAME speci�cation, and any predicates relating the
constants can be included in the TAME speci�cation in the axiom const facts.
When an I/O automaton is de�ned as the composition of two or more other
I/O automata (this happens with some of the automata in the RPC-Memory
example), the information extracted from the individual automaton descriptions
can be combined to produce a single TAME speci�cation in a (usually) straight-
forward way.

Hand proofs of invariant properties of automata typically contain a limited
variety of proof steps. Figure 2 shows the most common proof steps and their cor-
responding TAME strategies. TAME strategies also exist for many steps needed
less frequently than the six listed in Figure 2.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Proof Step TAME Strategy Remarksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Break down into base case and AUTO_INDUCT For starting an
induction (i.e., action) cases induction proofiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Appeal to precondition of an APPLY_SPECIFIC_PRECOND Used, when needed,
action in induction casesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Apply an auxiliary invariant APPLY_INV_LEMMA Used in any proof;
lemma needs argument(s)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Break down into cases based SUPPOSE Used in any proof;
on a predicate needs boolean argumentiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Apply “obvious” reasoning, e.g., TRY_SIMP Used for “it is now
propositional, equational, datatype obvious ” in any proofiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Use a fact from the mathematical APPLY_LEMMA Used in any proof;
theory for a state variable type needs argument(s)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Fig. 2. Common proof steps for invariant proofs, and their TAME strategies.

3 Comparing TAME with PVS for I/O Automata
For the TIP example, reference [9] describes the direct use of PVS to mechanize
the proofs of properties. Below, we contrast the TAME approach with this ap-
proach. For brevity, we refer to \TAME" speci�cations and proofs versus \PVS"
speci�cations and proofs.

As expected of two independent encodings of a problem, the PVS and TAME
speci�cations have rather di�erent structures. The PVS speci�cation of the
automaton TIP involves a large set of automaton-speci�c theories with a
complex import structure having several (eight or nine) levels. Moreover, the
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organization of the import structure is at least partly problem-speci�c. In con-
trast, the TAME speci�cation of TIP is contained in a single automaton-speci�c
theory that imports instantiations of a small collection of generic theories, and
is thus more easily understood as a whole. There are additional, automaton-
speci�c theories associated with the TAME speci�cation that supply rewrites
to the generic TAME strategies. However, these theories can be derived in a
standard, automatable way from the main theory for any given automaton.

In the PVS speci�cation, each transition is described using the combined
information from the precondition and e�ect of each action. In TAME, the pre-
conditions and e�ects of actions are de�ned separately. In some instances, some
information from the precondition is needed in the de�nition of the e�ect for
the de�nition to pass typechecking. However, when possible, separating the pre-
condition and e�ect has an advantage: it allows one to determine just when the
precondition is important in an induction step.

Because PVS lacks support for de�ning a general automaton type and for
passing theory parameters to theories, a completely general de�nition of re�ne-
ment is impossible to express in PVS. For this reason, TAME does not yet
include specialized support for proving simulations or re�nements. However, the
PVS speci�cation of TIP does include a de�nition of the re�nement relation, us-
ing the most convenient general form that can currently be provided with PVS1,
and in this respect, has an advantage over the TAME speci�cation. The generic
theories supporting the de�nition of re�nement in the PVS speci�cation could
almost certainly be adapted for use with a new TAME \re�nement" template.
Instead, a future version of TAME will use the support for theory parameters
to be provided in a future version of PVS [15] to support a generic re�nement
template.

The PVS encoding of state invariant lemmas, which is slightly di�erent from
the TAME encoding, has two lemmas associated with most invariants: the �rst
states that the invariant holds in start states and is preserved by transitions
and the second (usually proved trivially from the �rst) states that the invariant
holds for all reachable states. When induction is not required in the proof|
i.e., when the invariant follows from other invariants|only the second form is
given. The TAME encoding of state invariant lemmas uses only the second of
the forms used in the PVS encoding. For proofs requiring induction, the strategy
AUTO INDUCT �rst reduces this form to the �rst PVS encoding form and then
performs many of the standard initial proof steps.

The most dramatic di�erence between the PVS approach of [9] and the
TAME approach is in the proofs of invariants. The TAME proofs are much
shorter, and the signi�cance of proof branches and individual proofs steps is
much clearer. Moreover, the TAME proofs correspond in a very clear way to the
hand proofs in [8] (see Section 4.1). This contrast between the PVS proofs and
the TAME proofs is illustrated by Figures 3 and 4, which show corresponding
TAME and PVS proofs of TIP Invariant I5. While the TAME proof execu-
tion times in the TIP example average about three times as long as those of
the corresponding PVS proofs (e.g., I6, I7, and I8 combined took the longest
time, 37 seconds for TAME vs 15 seconds for PVS2), the relative simplicity and

1 This de�nition makes use of a parameterized automaton type de�ned in a theory
parameterized by the action and state types.

2 These times are for PVS 2.2 on an UltraSPARC-II.
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Inv_5(s:states): bool = (FORALL (e:Edges): length(mq(e,s)) <= 1);

;;; Proof lemma_5-like-hand for formula tip_invariants.lemma_5
(""
(AUTO_INDUCT) (APPLY_INV_LEMMA "2" "e_theorem")
(("1" ;;Case add_child(addE_action) (TRY_SIMP))
(APPLY_SPECIFIC_PRECOND) ("2" ;;Suppose not [source(e_theorem) = childV_action]
(SUPPOSE "e_theorem = addE_action") (TRY_SIMP))))
(("1" ;;Suppose e_theorem = addE_action ("3" ;;Case ack(ackE_action)
(TRY_SIMP)) (SUPPOSE "e_theorem = ackE_action")
("2" ;;Suppose not [e_theorem = addE_action] (("1" ;;Suppose e_theorem = ackE_action
(TRY_SIMP)))) (APPLY_SPECIFIC_PRECOND)

("2" ;;Case children_known(childV_action) (TRY_SIMP))
(SUPPOSE "source(e_theorem) = childV_action") ("2" ;;Suppose not [e_theorem = ackE_action]
(("1" ;;Suppose source(e_theorem) = childV_action (TRY_SIMP))))))
(APPLY_SPECIFIC_PRECOND)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Fig. 3. TAME Proof (nonverbose) of TIP Invariant I5
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
INV_5((s: states)): bool = (FORALL (e: E): length(mq(s)(e)) <= 1)

;;; Proof INV_5_inv-1 for formula invariant.INV_5_inv

(""
(EXPAND "invariant?") (PROP) (SKOSIMP*) (PROP) (PROPAX))))
(PROP) (("1" (LIFT-IF) (("1" ("2"
(("1" (INST?) (PROP) (INST?) (EXPAND "tos")
(SKOSIMP*) (REPLACE –1 :HIDE? T) (("1" (("1" (EXPAND "member")
(EXPAND "INV_5") (HIDE –1) (INST?) (ASSERT) (EXPAND "froms")
(SKOLEM!) (HIDE 2) (ASSERT) (USE "INV_2_reach") (EXPAND "inv")
(EXPAND "Init") (EXPAND "tl") (HIDE –1 2 3) (EXPAND "INV_2") (EXPAND "target")
(PROP) (EXPAND "length") (EXPAND "tl") (INST?) (PROPAX))))
(HIDE –1) (ASSERT) (EXPAND "length") (ASSERT) ("2" (HIDE –2) (INST?))))
(INST?) (LIFT-IF) (LIFT-IF) (INST?) ("4"
(PROP) (PROP) (PROP) (("1" (SKOSIMP*)
(HIDE 1) (ASSERT) (("1" (ASSERT)) (EXPAND "member") (EXPAND "steps")
(EXPAND "length") (EXPAND "length") ("2" (ASSERT) (EXPAND "froms") (EXPAND "R_C_step")
(ASSERT)) (LIFT-IF) (EXPAND "length") (ASSERT) (PROP)
("2" (PROP) (LIFT-IF) (HIDE –2 –3 –4) (REPLACE –3 :HIDE? T)
(SKOLEM 1 (S _ T)) (("1" (ASSERT)) (ASSERT)))) (INST?) (EXPAND "INV_5")
(INDUCT "a" 1) ("2" (ASSERT)) ("2" (INST?)))) (EXPAND "append") (PROPAX))
(("1" ("3" (ASSERT)))) ("3" (EXPAND "length" 1) ("5"
(SKOSIMP*) ("2" (INST?)))) (SKOSIMP*) (EXPAND "length") (SKOSIMP*)
(EXPAND "steps") ("2" (EXPAND "steps") (ASSERT)) (EXPAND "steps")
(EXPAND "A_C_step") (SKOSIMP*) (EXPAND "C_K_step") ("2" (EXPAND "ROOT_step")
(PROP) (EXPAND "steps") (PROP) (EXPAND "tos") (PROP)
(REPLACE –2 :HIDE? T) (EXPAND "ACK_step") (REPLACE –3 :HIDE? T) (EXPAND "target") (REPLACE –2 :HIDE? T)
(EXPAND "INV_5") (PROP) (EXPAND "INV_5") (EXPAND "inv") (EXPAND "INV_5")
(SKOSIMP*) (REPLACE –1 :HIDE? T) (SKOSIMP*) (EXPAND "member") (PROPAX))))))
(LIFT-IF) (EXPAND "INV_5") (LIFT-IF) (EXPAND "froms")hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Fig. 4. PVS Proof of TIP Invariant I5 by Devillers et al.

clarity of the TAME proofs strongly suggests that the human time needed to
construct the proofs with TAME is several times shorter than that needed to
construct proofs with the PVS-based approach of [9]. The PVS proofs clearly
have repeating patterns; the TAME strategies take advantage of such repeating
patterns to produce higher-level proof steps.

Although the TAME proofs for TIP attempt to follow the hand proofs very
closely, avoiding some of the case breakdowns in the hand proofs often produces
shorter TAME proofs. In addition to checking hand proofs, TAME has proved
helpful in proof exploration and can also be used, without any formal hand proof,
to test the user's ideas of whether (or why) a property holds.

4 Example I/O Automata, Properties, and Proofs

This section describes the results obtained by the �rst author in using TAME
to mechanize the speci�cations and Lamport-style hand proofs [14] of invariant
properties of several I/O automata models. These model were from two sources:
the Tree-Identify Protocol Speci�cation [9, 8] and the RPC-Memory Speci�cation
[21, 20]. In each case, we show how TAME was used to check the hand proofs,
with attention to particular techniques used and problems encountered in creat-
ing the TAME speci�cations and mechanizing the proofs. Because TAME does
not yet have speci�cation or proof support for simulation proofs, in this exercise,
only proofs of invariants were checked.
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4.1 The Tree-Identify Protocol
Reference [9] describes and analyzes the IEEE 1394 high performance serial
multimedia bus protocol. The major goal of the analysis is to verify the leader
election algorithm, the core of the tree identify phase of the physical layer of
the protocol. An I/O automaton model for the leader election algorithm pro-
vides the mathematical basis for the hand proof of the main property: \For an
arbitrary tree topology, exactly one leader is elected". The tree identify protocol
is only applied to a graph with a particular type of topology: the graph must
be an undirected digraph (i.e., if it contains an edge e, then it also contains its
reverse edge reverse(e)) without self-loops and with a tree-like topology.3 As the
algorithm proceeds, particular links (directed edges) between adjacent nodes are
added to a directed spanning tree until the tree is complete; its root is then the
\leader". At any point during execution of the algorithm, those edges that have
been added to the spanning tree are known as child edges.

In [9], the algorithm is speci�ed in terms of an I/O automaton TIP. Ap-
pendix A contains the original speci�cation of TIP from [9]. A number of invari-
ant properties (see Appendix B for some examples) are established for TIP and
used to prove that TIP is a re�nement of a more abstract automaton SPEC,
which captures the required behavior. We focused on TIP and its invariants,
due to our interest in automating the hand proofs of the invariants. The TAME
translation of this speci�cation was easily obtained from the I/O automaton
speci�cation using TAME's standard template [3, 2].

The �rst �fteen invariants from [9], I1 through I15, form a sequence estab-
lishing that at most one leader is elected by the TIP algorithm. Devillers has
developed detailed Lamport-style hand proofs for these invariants [8]. Each hand
proof is one to two pages in length. The full set of invariants from [9] includes
two extra invariants, I16 and I17, used in the proof that at least one leader is
elected. All but the invariant I15 were proved using TAME and no other math-
ematical superstructure, except a small set of auxiliary lemmas describing the
relationship between a link and its inverse link (needed for invariants I10, I11,
I12 and I14). These auxiliary lemmas were used to translate those steps in the
hand proofs whose justi�cation was \math".

Figures 5 and 6 show the correspondence between steps from a Lamport-
style proof and TAME steps for invariant I4. Figure 5 shows only that part, a
single branch, of the hand proof that TAME found to be nontrivial; Figure 6
shows the complete TAME proof of I4. In the hand proof, the values s and t
represent the prestate and poststate in the induction step, and the values f and
g are, respectively, the Skolem constants for the quanti�ed variables e and f in
I4, which are automatically named e theorem and f theorem by TAME. The
appeal \by IH" to the inductive hypothesis at step < 3:1 > in the hand proof
is handled automatically by TAME's AUTO INDUCT strategy whenever, as in
this case, the correct instantiation of its variables is the Skolem constants. The
only steps the TAME user must supply, besides TRY SIMP, are the SUPPOSE
for the case distinction at step < 3:2:2 > and the APPLY SPECIFIC PRE-
COND and INST corresponding to application of the precondition to f and g at
step < 3:2:3:1 >. Checking that f and g are of type to(v) is handled by proving

3 That is, for each pair of vertices v,w, there is a unique sequence of vertices v0;v1;:::; vn
such that (1) v0 = v, (2) vn = w, (3) for all 0 � i � n � 1; (vi; vi+1) 2 Edges, and
(4) no vertex occurs more than once in the sequence.
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<3> Assume a = C KNOWN(V ), v 2 V

<3.1> . s j= I4 (by IH)

<3.2> . Take arbitrary f; g; v0 such that target(f) = target(g) = v ^ g 6= f

<3.2.1> . . s j= init(v0) _ child[f ] _ child[g]

<3.2.2> . . Case distinction on v0 = v

<3.2.3> . . Assume v0 = v

<3.2.3.1> . . . s j= child[f ] _ child[g] (pre. C KNOWN (v) and f; g 2 to(v))

<3.2.3.2> . . . t j= child[f ] _ child[g] (e�. C KNOWN (v) does not change child)

<3.2.3.3> . . . t j= init(v) _ child[f ] _ child[g]

<3.2.4> . . Assume :(v0 = v)

<3.2.4.1> . . . s j= init(v0) _ child[f ] _ child[g] (by <3.2.1>)

<3.2.4.2> . . . t j= init(v0) _ child[f ] _ child[g] (e�. C KNOWN (v does not change child

or init[v0 ] by <3.2.4>)

<3.2.5> . . t j= init(v0) _ child[f ] _ child[g]

<3.3> . t j= I4 (def. I4)

Fig. 5. Single Nontrivial Branch of Lamport-style Proof of Invariant I4

;;; Proof lemma 4-3 for formula tip invariants.lemma 4
(\" (AUTO INDUCT)

;;Case children known(childV action) < 3 >;< 3:1 >;< 3:2 >;< 3:2:1 >
(SUPPOSE \v theorem = childV action") < 3:2:2 >
((\1" ;;Suppose v theorem = childV action < 3:2:3 >

(APPLY SPECIFIC PRECOND) < 3:2:3:1 >
;;Applying the precondition
;;init(childV action, prestate)
;; &
;; (FORALL (e: Edges):
;; FORALL (f: tov(childV action)):
;; child(e, prestate) OR child(f, prestate) OR e = f)
(INST \speci�c-precondition part 2" \e theorem" \f theorem")
((\1" (TRY SIMP)) (\2" (TRY SIMP)))) < 3:2:3:2 >;< 3:2:3:3 >

(\2" ;;Suppose not [v theorem = childV action] < 3:2:4 >
(TRY SIMP)))) < 3:2:4:1 >;< 3:2:4:2 >

< 3:2:5 >
< 3:3 >

Fig. 6. Complete TAME Proof (verbose) of Invariant I4

a TCC generated by PVS when the INST is done|this is accomplished by the
proof step TRY SIMP at \2" in the line right after the INST step. The e�ect of
the action, the appeal to previous proof steps, and setting up invariant I4 in the
poststate as a proof goal are all handled automatically by the TAME strategies
AUTO INDUCT and TRY SIMP.

Invariant I15 is especially important because it is the only invariant used in
the proof that TIP is a re�nement of SPEC [9]. I15 is also the only invariant that
requires knowledge of the graph topology of the tree identify protocol network.
Both the PVS proof of I15 described by Devillers et al. in [9] and the TAME
proof of I15 required formalizing some of this knowledge. The (natural language)
hand proof in [9] is an informal proof by contradiction, which the TAME proof
resembles at a high level. Devillers et al. needed a few days to construct the PVS
proof, because they took the time to specify a general PVS theory for acyclic
�nite strongly-connected digraphs. Our approach, which bene�ted from their
experience, was more economical. The hand proof of I15 and the way it uses
invariant I14 suggested that to prove I15 in TAME, we needed to formalize only
the fact that the graph topology is connected.4 The TAME proof of invariant

4 The fact that the graph topology is tree-like is used only in a proof that was not
mechanized by Devillers et al. [9]: the proof that at least one leader is elected.
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I15 then uses two auxiliary invariants: (i) Any adjacent link of a child link is
also a child link ; and (ii) Any link connecting to the source of a child link via a
path of adjacent links is also a child link. A link f is adjacent to a link e if f is
an incoming link to the source of e, i.e., target(f) = source(e). Invariant (ii) is
proved by induction on the length of the path, using Invariant (i), a consequence
of Invariant I14. The hand proof of I15 in [9] relies on Invariants I14 and I11
plus the existence of a unique cycle-free path between any two vertices. Our
corresponding proof in TAME uses Invariants (ii) and I11 plus the connectedness
axiom.

4.2 RPC-Memory Speci�cation Problem
The RPC-Memory problem, posed in 1994 by Broy and Lamport at the Dagstuhl
Workshop on Reactive Systems, concerns the speci�cation of a memory compo-
nent and a remote procedure call (RPC) component for a distributed system and
the implementation of both. The I/O automata solution in [21] contains approx-
imately twenty I/O automata and proofs of many kinds of properties: relative
safety, liveness, deadlock-freeness, properties of quiescent states, implementation
(based on weak simulation or weak re�nement properties), and state invariants.
Hand proofs of these properties are provided in [20]. Almost all proofs of state
invariants are in the Lamport style. Since our goal was to automate these proofs,
we focused on three automata for which invariants were proved:Memory*, which
models one version of the memory; MemoryImp, which models the combination
of a \reliable" version of the memory with the RPC, connected through an ap-
propriate front end for the RPC; and Imp, which models an implementation of
a lossy version of the RPC, with timing information added.5

Few problems arose in the TAME mechanization of the Memory*, Memo-
ryImp, and Imp speci�cations and the detailed proofs of their properties from
[21, 20]. Nevertheless, the mechanization did expose some incompleteness and
inconsistency in the speci�cations and some missing and incorrect details in the
proofs. For example, 1) the intended types of certain constants are unclear, 2)
there is a type inconsistency in the de�nition and use of one function, and 3) a
missing detail in the proof of a Memory* invariant required the identi�cation
and proof of an auxiliary invariant lemma in TAME.

Aspects of the TAME mechanization required some creativity. In particu-
lar, a few hand proofs were only sketched, so we needed to establish the details
of the corresponding TAME proofs, including some needed auxiliary invariants.
Further, the encoding of MemoryImp and Imp using the TAME speci�cation
template required renaming state variables to avoid name clashes and careful
de�nition of the union types and subtype recognizers needed to de�ne the com-
position of certain transitions from separate components.

Despite the above complications, the speci�cation and proofs for Memory*,
MemoryImp, and Imp in TAME were straightforward. The hand proofs for the
Memory* invariants were easily checked by applying only four TAME steps:
AUTO INDUCT, APPLY SPECIFIC PRECOND, APPLY INV LEMMA, and
TRY SIMP. The example MemoryImp led to improvements in some existing
TAME strategies, and the addition of two new ones: INST IN and SKOLEM IN

5 Although Imp does involve timing information, this information is encoded using
a set of independent clocks instead of a universal clock. Instead of using the time
features of the timed automaton template of TAME, we treated the time step action
for Imp as an ordinary I/O automaton action.
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(see Section 5). Given these improvements, the TAME proofs for MemoryImp
used only the four preceding proof steps plus SUPPOSE, DIRECT PROOF,
INST IN, SKOLEM IN, and the PVS proof step EXPAND. Finally, the TAME
proofs for Imp were done using only the four preceding proof steps plus SUP-
POSE, DIRECT PROOF, and the PVS proof step INST.

5 Discussion
This section discusses the �rst author's experience in using TAME to specify and
prove properties of I/O automata, including the time required, the problems that
had to be overcome to extract TAME speci�cations from I/O automata models,
and the e�ort required to prove state invariants with TAME. Our goal was to
understand the di�culty of learning how to use TAME, for a user without any
previous knowledge of PVS, I/O automata, or TAME. This section also discusses
enhancements made to TAME as a result of the �rst author's feedback.

Speci�cation in TAME. The �rst TAME speci�cations that the �rst author
developed were of the I/O automata Memory*, MemoryImp, and Imp from the
RPC-Memory problem [21]. Understanding previous TAME speci�cations re-
quired about one week. Specifying Memory* in TAME required two additional
days. The built-in templates were useful for understanding what information
about the model was needed and how to organize this information. De�ning the
invariants of the Memory* model in TAME was easy, given the prede�ned tem-
plate for specifying invariants. The de�nition of the auxiliary theories (which
currently must be developed by hand) took extra time but was straightforward.

After this initial experience, the speci�cation of TAME theories for Mem-
oryImp required only a few days. The di�culty in this case was learning how
to use TAME to combine the three component I/O automata (RPC, ClerkR
and RMemory0) and their corresponding input and output actions into a single
automaton speci�cation. A complication was handling certain input actions hav-
ing di�erent de�nitions depending on the type of the parameter to the action.
The parameters of such actions had to be represented as union types using the
PVS datatype construct. The �rst author's initial speci�cation of MemoryImp
had some unprovable TCCs connected with types speci�ed in [21] in terms of
membership, subtyping, and distinction between members. Although the TCCs
could have been proved by including axioms specifying these relationships, one
lesson learned was that rede�ning such types in terms of a supertype of related
types using the PVS datatype construct both permits the TCCs to be handled
automatically by PVS and avoids the possible creation of inconsistent axioms.

The speci�cation of Imp was straightforward and almost problem-free. The
only di�culty was determining that the \for-do" statement in the de�nition of
the time-step action TIME needed to be formalized using PVS's LAMBDA con-
struct. Speci�cation of the model and proofs of the invariants in TAME took
approximately three days, with some of the time used to develop the auxiliary
theories. After the experience with the more complex RPC-Memory speci�ca-
tions, representing the speci�cation for TIP in TAME was very simple.

For a new user, the templates for the automaton speci�cation and for the
invariant lemma de�nitions proved extremely useful. The speci�cation template
provides a starting point for specifying an automaton in PVS without a deep
knowledge of PVS; the user simply �lls in the actions, the names and types
of state variables, the action preconditions and action e�ects, and the start
states, and provides a few auxiliary de�nitions of types and constants. The user
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must also generate some auxiliary functions, strategies, and theories needed to
support the TAME strategies. This process, which will eventually be automated,
is tedious but straightforward to do by hand, once the speci�cation template is
�lled in.

Proofs using TAME. Once the way to apply the TAME strategies and the
nature of their correspondence with the steps in the hand proofs was understood,
the TAME proofs of the three invariant properties forMemory* (and the fourth,
auxiliary property required to prove the �rst) were easily completed in a few
hours. Proving the twelve invariants of MemoryImp was the most di�cult part,
for two reasons: 1) the lack, in some cases, such as the corollaries, of complete
and precise hand proofs, and 2) the inability of the strategies to capture (or at
least to simply capture) a few of the proof steps, such as the one requiring the
application of an invariant property to a poststate. Once the TAME strategies
were improved (see Section 4.2 and below), proving these invariants required a
little over two weeks. As with specifying Imp, proving the four properties of Imp
in TAME was straightforward and almost problem-free.

After experience with the more complex RPC-Memory examples, and be-
cause the formal and clear hand proofs in [8] were almost immediately repro-
ducible in TAME, obtaining TAME proofs for TIP was very simple. The TIP
speci�cation and proofs of the �rst fourteen invariants for TIP took three days.
Due to the need to discover and formalize the minimal knowledge needed about
the graph structure, approximately two additional days were required to prove
the last invariant, I15.

In proving the invariants of the automata considered in this paper, TAME
was used only twice (on invariants I16 and I17 of TIP) to construct proofs with-
out any handwritten proofs as guidance.6 The proof of I16 in TAME required no
thought; we simply applied AUTO INDUCT, APPLY SPECIFIC PRECOND,
and TRY SIMP. The proof of I17 used these steps, plus repeated applications
of APPLY INV LEMMA and APPLY LEMMA. Finding the right lemmas to
apply required a few hours; nevertheless, TAME saved the user from micro-
management of the proof. TAME was also used to mechanize several simply
sketched hand proofs, such as Corollary 30 of MemoryImp. After studying the
hand proofs, we formulated an auxiliary invariant lemma that could be proved
with TAME and was su�cient to support the TAME proof of Corollary 30.
Thus, in all cases in which the proof of a lemma was incomplete, using TAME
resulted in a structured proof for the lemma.

TAME Enhancements Due to User Feedback. Feedback from the �rst
author led to improvements in TAME that include an improved template con-
vention, improvements to existing strategies, and the addition of new strategies.

The strategy AUTO INDUCT discharges the base (start state) case in an
induction proof automatically in most cases, provided that the start state pred-
icate start(s) from the TAME template is given as an equality de�ning s. The
Memory* example led to a new improved method of formulating start which
in e�ect subsumes the old one. Previously, start(s) has been expressed as an
equality between the argument s and an explicit record value (a single start
state). In the new method, start(s) is an equality between s and s with its
time-related components assigned the standard initial values and its basic com-

6 The proofs given for I16 and I17 in [8] are simply \done in PVS".
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ponent (which covers non-time-related state variables) partially or fully updated.
This formulation matches the initialization of the I/O model forMemory*, which
de�nes the initial values of only three of the �ve state variables.

To facilitate a faithful translation of some of the proofs from the example
MemoryImp into TAME, improvements and additions to the TAME strategies
were needed. For example, in the proof of Lemma 35, an invariant lemma is
applied in an induction step to the poststate, rather than, as is more common, to
the prestate. TAME previously represented the poststate as trans(a,prestate),
where a is the action of the induction step, and recorded among the hypothe-
ses that it is a reachable state, facilitating application of an invariant lemma
to the poststate. However, applying an invariant lemma to trans(a,prestate)
involves not only using a complex term (containing the current action a as an
argument) but, once the invariant lemma is applied, expanding the function
trans. Improvements to AUTO INDUCT and APPLY INV LEMMA now hide
this complexity from the user, replacing the term trans(a,prestate) with the
name poststate, and allowing the user to simply invoke the invariant lemma
on poststate plus any other arguments to the lemma.

The proofs of Lemmas 27 and 29 demonstrated the di�culty of following the
steps in a hand proof when one cannot instantiate or skolemize with respect to
embedded quanti�ers in PVS. To address this problem, the strategies INST IN
and SKOLEM IN were added to TAME to approximate internal instantiation
and skolemization. These strategies perform automated simpli�cation in an at-
tempt to handle the non-quanti�ed parts of a formula, and then use the normal
PVS proof steps INST and SKOLEM. In some cases (as unfortunately happens
for Lemma 35), this leads to some wasteful proof branching, but in many cases,
this works well. The proof of Lemma 35 also inspired a general improvement
that allows TRY SIMP to cover even more \obvious" general reasoning steps.

6 Related Work
An increasing number of proof assistants, including assistants for the Duration
Calculus [24], for the TRIO logic [1], and for proving invariant properties of
DisCo speci�cations [13], use PVS as the underlying prover. The Duration Cal-
culus and TRIO assistants support proofs using steps from particular logics.
The DisCo assistant supports proofs of properties of DisCo speci�cations, using
Lamport's Temporal Logic of Actions, with specialized PVS strategies generated
by a compiler. These strategies, though uniform in concept, are speci�c to each
given application. A similar approach was used in an earlier version of TAME;
the PVS enhancements, especially the documentation of the internal structure
of PVS sequents, have allowed us to make the TAME strategies more generic.

Several researchers have applied mechanical theorem provers to LV timed
automata or I/O automata. In addition to the application of PVS described in
[9], reference [16] describes how the Larch theorem prover LP was used to prove
properties of several protocols speci�ed as LV timed automata, and reference
[19] describes a veri�cation environment for I/O automata based on Isabelle;
like [9], both include simulation proofs as well as proofs of invariants. In addi-
tion, [19] develops a detailed metatheory for I/O automata. TAME has an ad-
vantage over Larch and Isabelle: it produces compact, informative proof scripts.
Although Larch provides detailed proof scripts with some information on the
content of a proof, Larch does not support the matching of high level natural
proof steps with user-de�ned strategies, nor the automatic documentation of
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a proof through comments provided by TAME. While Isabelle tactics perform
some of the services of the TAME strategies [19], Isabelle does not save proof
scripts for completed proofs.

A toolset has been developed that provides an automatic translator from the
IOA language for I/O automata to Larch speci�cations and an interface to the
Larch theorem prover LP [11]. This toolset will eventually include a similar trans-
lator to PVS that is being developed by Devillers and Vaandrager; a prototype
now exists [10]. TAME currently has a prototype translator from speci�cations
in the SCR language to TAME speci�cations [6], and an automatic translator
from IOA speci�cations is planned.

7 Conclusions and Future Work
The work described in this paper has provided valuable user feedback about the
utility of the TAME templates and strategies and an opportunity to compare
the application of PVS to a particular problem, the TIP veri�cation, in two
ways: directly, or by using TAME. User feedback helped us improve TAME
by re�ning existing strategies, by adding new strategies, and by improving the
default template for the start state predicate. The results of the TIP comparison
clearly demonstrate the advantages of using TAME for specifying and proving
invariant properties of I/O automata. These advantages of TAME have recently
also been noted by another new TAME user [7].

This was the �rst time TAME was used to mechanize Lamport-style proofs.
Constructing TAME proofs that very closely follow hand proofs presented in this
style was generally straightforward. However, like Rudnicki and Trybulec [22], we
found that Lamport-style proofs are still informal and thus may have incorrect
or missing details. In addition, as illustrated in Figures 5 and 6, many details
included in Lamport-style proofs need not be made explicit in TAME proofs;
some micro-steps in proofs are directly managed by the TAME strategies, which
employ the PVS decision procedures, along with some rewriting and forward
chaining, to automatically handle most low-level proof steps. Some hand proofs
can be shortened even further in TAME. In fact, the hand proofs mechanized
in TAME usually make clear which facts are needed in proving each result. Use
of the TAME step TRY SIMP avoids many explicit uses of \case distinction",
provided all relevant facts for the proof branches for the distinct cases are �rst
provided. However, simpli�ed TAME proofs can sometimes obscure details of
human reasoning that are important to understanding a proof.

Future plans for TAME are to add support for proofs of forward simula-
tion, backward simulation, and re�nement relations between automata speci�ed
with the TAME speci�cation template, to provide an interface for generating
template instantiations and their auxiliary theories and strategies from minimal
user input, and to generate natural language explanations of TAME proofs.
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A The I/O Automaton TIP from [9]

Internal: ADD CHILD, CHILDREN KNOWN, RESOLVE CONTENTION, ACK
Output: ROOT

State Variables: init : V! Bool

contention : V! Bool
root : V! Bool
child : E! Bool
mq : E! Bool�

Init: 8v; e : init[v]
^:contention[v]
^:root[v]
^:child[e]
^mq[e] = empty

Actions:

ADD CHILD(e : E)
Precondition :
^init[target(e)]
^mq[e] 6= empty

E�ect :
child[e] := 1
mq[e] := tl(mq[e])

ACK(e : E)
Precondition :
^:init[target(e)]
^mq(e) 6= empty

E�ect :
contention[target(e)] := :hd(mq[e])
mq[e] := tl(mq[e])

RESOLV E CONTENTION(e : E)
Precondition :
^contention[source(e)]
^contention[target(e)]

E�ect :
child[e] := 1
contention[source(e)] := 0
contention[target(e)] := 0

ROOT (v : V)
Precondition :
^:init[v]
^:contention[v]
^:root[v]
^8e 2 to(v) : child[e]

E�ect :
root[v] := 1

CHILDREN KNOWN(v : V)
Precondition :
^init[v]
^8e; f 2 to(v) : child[e] _ child[f ] _ e = f

E�ect :
init[v] := 0
for e 2 from(v)domq[e] := append(child[e�1]; mq[e])

B Some Invariants of TIP from [9]7

4. If a node has left the initial stage then all links, or all links but one, are child links.
I4(e; f; v) � target(e) = target(f) = v ^ e 6= f ! init[v] _ child[e] _ child(f)

5. Each link contains at most one message at a time.
I5(e) � length(mq[e]) � 1

6. If a node is in the initial stage, then none of its neighbors is involved in root con-
tention.

I6(e) � init[source(e)]! :contention[target(e)]

7. Child links are empty.
I7(e) � child[e]! mq[e] = empty

8. If a node is involved in root contention, then all its incoming links are empty.
I8(e) � contention[target(e)]! mq[e] = empty

10. A node never sends a parents request to its children.
I10(e) � mq[e] 6= empty ^ :hd(mq[e])! :child[e�1]

11. Two nodes can never be children of each other.
I11(e) � child[e]! :child[e�1]

14. All incoming liks of the source of a child link, except for its inverse, are child links
as well.

I14(e; f) � child[e] ^ source(e) = target(f) ^ e 6= f�1 ! child[f ]

15. There is at most one node for which all incoming links are child links.
I15 � (9v8e 2 to(v) : child[e])! (9!v8e 2 to(v) : child[e])

7 We have dropped the argument v to I15.
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